
I N V E R S E  P R O B L E M  O F  H E A T  C O N D U C T I O N  
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We consider  the one-dimensional  inverse  problem of nonstat ionary heat conduction and we 
analyze the physical  and mathemat ica l  causes  of instability in various forms of its solution. 

For  the heat conduction equation we can identify three types of inverse  problems,  which may be in- 
f e r red  in seeking the cause for a known effect: 

1) determinat ion of the boundary conditions, 

2) determinat ion of the coefficients of the equation, 

3) determinat ion of the t empera tu re  field for a t ime in the past .  

In this paper  we investigate a problem of the f i rs t  type [1-9, 15-23] in which, f rom the resul ts  of 
measurements  of t empera tu re  in the in ter ior  of a body, it is required to r ecove r  the heat flow or t empe r -  
ature on its surface  as a function of the t ime (a problem of this type was considered for the f i rs t  t ime in 
[2, 15]). In the major i ty  of cases  this is the only way to determine the thermal  boundary conditions when 
studying heat and mass  t r ans fe r  p roces se s  experimentally.  This problem takes on a special  value in the 
study of nonstationary heat phenomena. 

A basic problem which arises when solving problems of this kind is the difficulty of obtaining suffi- 
ciently exact and sufficiently stable results. Overcoming these difficulties must be based on a careful 
study of the characteristic features of inverse problems and a strict justification for the choice of mathe- 
matical methods for their solution. 

We consider the heat conduction process in an infinite plate, described by the equation 

c__Or o\ /  o<.,-<,o, (1) 
O~ Ox \ ax ) '  

At the initial instant the distr ibution T(x, 0) = ~o(x) is known. A t empera tu re  t r ansmi t t e r  is placed at the 
point x = xl (x~ > 0). 

We ass ign the following conditions on the boundaries of the region xl -< x - b: 

T (x~, w) ~-= T i (r), 

T(b,  r)---T i ,  ('0 or - -~  OT(b,ox w) ----qi (r) ' (2) 

where TI(w), Ti(T), and qi(~) are  known functions. 

The Eqs.  (1) and (2) correspond to the direct  problem of heat conduction. Solving it, we determine 
the heat flow at the boundary x = xl: ql(r) = --X [~T(x 1, T)]/[DX]. 

In the region 0 -< x -< xi we consider  the Cauchy problem corresponding to the continuation of the so-  
lution of the heat conduction equation up to the boundary x = 0 of the region from the known conditions at 
the point xi: 

7" (x, ~) = 7"~ (r), 

__ ~ OT (x. r) 
- -  q, (r). (3) 

ax 
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Equations (1) and (3) define the inverse  problem of heat  conduction f rom whose solution we wish to 
determine the surface t empera tu re  Tw(~) = T(0, r) or  the heat flow into the body, namely,  q(T) = - -k  [0T(0, 
T)]/[0X]. We r e m a r k  that it is not n e c e s s a r y  to reduce the inverse  problem to a Cauchy problem and that 
another formulation of the problem is possible in which the solution is sought di rect ly  f rom the conditions 
given on the boundaries x = x 1 and x = b. 

By convention, we represen t  the inverse  heat conduction problem by the f i rs t  o rder  opera tor  equation 

A n = f ,  UEDA, fEQA, (4) 

where A is a continuous opera tor  acting f rom the space of solutions U into the space of the input data F; u 
is the solution sought; f denotes input data; DA c:_ U is the domain of definition of the opera tor  A; QA 
= A (DA) c: F is the domain of the values of the opera tor  A. 

In the general  case the problem of solving the given equation is considered to be well-posed if its so-  
lution sat isf ies the following requi rements :  

1) it exists for  a rb i t r a ry  fEQ A = F, 

2) it is unique in U, 

3) it is stable, i . e . ,  to smal l  variat ions of the right hand side f in the met r i c  of the space F there  
correspond small  deviations of the solution u in the met r i c  of the space U. 

Henceforth we assume that the solution (4) exists and is unique. We base this assumption on the 
physics of the inverse  heat conduction problem, an assumption which is cor robora ted  by Kovalevskaya 's  
theorem [10], according to which the solution of the Cauchy problem exists and is unique providing that 
T(x), ql(T), and the solution sought are  analytic. 

We pause to analyze the third of the requirements  stated above for the problem to be well-posed.  
For  this purpose we consider  the possible  d i rec t  methods for solving the inverse  problem in a l inear  for -  
mulation (k = const, a = k /C  = const). By direct  methods we mean methods of solving the initial problem 
direct ly  by establishing the inverse  cor respondence:  u = R(f). The papers  [1-9, 15-18, 22, 23] are  con- 
cerned with this aspect  of the problem. 

Solution in the Form of a Power Series.  We assume that the functions Tl(~) and ql(r) a re  infinitely 

differentiable (T~n)(T) = dnT1/d~ n, q~n)(r) ~- dnql/dT n, n ~ ~o) and that the coefficients in the heat conduc- 
tion equation a re  constants.  In this case  we can write down formal ly  the Stefan solution for determining 
the t empera tu re  field; thus 

,,=o (2n)! a '~ (2 i f -  1)! a% " (5) 

Differentiating the relat ion (5) with respec t  to x and retaining the f i rs t  N t e rms ,  we write down a 
finite expression for the heat  flow on the boundary of the body at x = 0: 

, v - ,  ql,~, x] n .v x],~_, 
q ('r) = - -  ' ~  ~-  ~, ' ~  T~'~) 

(2n)t a n ~ (2tZ - -  1)! a n (6) 
t~O n~l  ' 

For  the t empera tu re  of the sur face  of the body we have 

N--I [ 2n qi,,-) (,r) x],~+, ] 
V~ (x) = ~ T~") (~) xl (7) 

(2n)! a '~ (2n -:- 1)[ a"~ 

Thus, in determining the boundary conditions in accordance  with the given form of the solution of 
the inverse  heat conduction problem, it is neces sa ry  to calculate the values of the derivat ives  up to the 
N-th order .  Since the functions T l and ql a re  usually given discre te ly  with certain fluctuating e r r o r s  and 
the opera tor  of differentiation represen ts  a typical case of unbounded opera tors ,  the d i rec t  method for 
solving the inverse  problem, indicated above, leads in the general  case to an unstable calculation p roces s .  

Integral  Form of the Inverse  Heat Conduction Problem.  In the l inear formulation inverse  problems 
reduce to the solution of Volterra  type integral equations of the f i rs t  kind: 

Au ~--- .( K (~, ~) u (~) d~ = f (% To --.~; ~, ~ .~ T,,~. (8) 
To 
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A simple  and widely used method for solving Eq. (8) involves reducing it to an equation of the second kind 
through the operat ion of differentiation: 

T 

u (~) - j" K, iT, ~ ~' (~) 
, K(~,~) ~ (~)d~- ' 

To 

However, such a p rocedure  is possible  if the kernel  of the original  equation nowhere vanishes on the 
interval [T 0, rm]  (K(T, r) ~ 0). In our case  

k ( ~ - - ~ ) ~  O, ~ : ,  

so that we cannot apply this method for  solving the integral  equation (8). In addition, repeated differentia-  
tion also does not give the des i red  resul t .  Consequently, it is neces sa ry  to solve the original Eq. (8) of 
the f i r s t  kind direct ly .  

The solution of this equation for  u@) consti tutes a typical i l l -posed problem since the Vol te r ra  opera-  
tor  r epresen t s  a complete ly  continuous opera tor .  

Fini te-Difference Form of the Solution. If we approximate the derivat ives  in the express ions  (6) and 
(7) by finite differences,  we obtain computational relat ionships analogous to the solution of the l inear in- 
ve r se  heat conduction problem in an explicit scheme difference form,  where N is the number  of layers  on 
the segment  0 < x < x 1 (see [8]). Thus the numer ica l  method of solving the original problem will also be 
disposed towards an unstable computation. 

Reduction to Variational P rob lems .  It is des i rable  in the genera l  case to c a r r y  through the r ecove ry  
of the boundary conditions in such a way as to reduce  the residual  A = OF(AU, f), corresponding to the de-  
viation of the left side f rom the right side in the me t r i c  of the space F, to some value determined by the 
e r r o r  in the approximate  data of the problem.  If the approximating opera tor  A h = A and the input in fo rma-  
tion f a re  known with accuracy  6 = 0, it is then n e c e s s a r y  to have A ~ 0. The method, which suggests  i t -  
self, of obtaining the des i red  approximations f rom the solution of the problem of minimizing a quadratic 
functional can give r i se  to ser ious  difficulties f rom a numerica l  standpoint. This is explained, on the one 
hand, by the fact that convergence with respec t  to the functional does not imply convergence of the approxi-  
mate  solutions to the t rue  solution, and, on the other hand, by the fact that it is usually neces sa ry  to solve 
the problem with approximate  data.  The resul t ing "solutions" may differ substantial ly f rom the actual so-  
lutions. 

Such a situation is the resu l t  of an i I l -posed problem Au = f. The condition of the variat ional  prob-  
lem may in many cases  prove  to be worse  than that of the original problem.  Thus for the minimizat ion of 
a quadrat ic  functional use is often made of the Euler  equation 

A * A u  - -  A*[ = O, 

which is more  poor lyeondi t ionedthan A u - - f  = 0. 

In the case  of a l inear  law of heat conduction and a normal iza t ion  corresponding to the space L 2 the 
functional has the form 

I 

Its minimizat ion cor responds  to the solution of a Fredholm integral  equation of the f i r s t  kind 

"Ca 

j ~ (~, ~) u (~) d~ = ~ (~). 
To 

Such a problem is automatical ly  i l l -posed.  Therefore  the method of least  squares ,  used in [3, 6-8] for  
recover ing  the heat flow, does not yield stable solutions for  sufficiently smal l  t ime  steps A~'. 

Thus f rom an analysis  of the possible  di rect  methods of solving the original  inverse  heat conduction 
problem we have established that these problems a re  mathemat ica l ly  i i l -posed,  there  being an absence of 
a continuous dependence of the resul ts  on the input data. 

We pause to consider  the physical  side of this phenomenon. An essent ial  point in understanding the 
physicaI  nature of the instabil i ty of inverse  heat  conduction problems is the s t rong smoothing of the cha r -  
ac te r i s t i c  s ingular i t ies  of the functions Tw@) and q(T) as the t empera tu re  t r ansmi t t e r  is moved deeper  into 
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the body f rom the heated sur face .  There fo re ,  to smal l  deviations in f the re  will cor respond la rge  devia- 
tions in the unknown solution u. Since changes in the input data a re  accomplished with the aid of a specif ic  
sys tem of physical  ins t ruments ,  these  data a r e  always known with a ce r ta in  approximation 6, and the solu-  
tion of the inverse  heat  conduction problem,  corresponding to the m easu red  input data, may differ  substan-  
t ial ly f rom the solution sought and may c lear ly  display a pronounced osc i l la tory  behavior .  The r e p r e s e n t a -  
tion of the original  opera tor  A in t e r m s  of the approximating opera tor  A h (with an accuracy  of approxima-  
tion h) plays a definite ro le  in dis tor t ion of the resu l t s  as do also the round-off  e r r o r s  in the computation. 
Moreover ,  t he re  is an initial t ime interval  A~0, de termined  by the threshold  sensi t ivi ty of the measur ing  
sys tem,  during which the ins t ruments  do not r e g i s t e r  in spi te  of the fact that heat  is being applied to the 
body. This initial indeterminateness  in the boundary condition will be p resen t  over  the whole t ime per iod 
during which the investigation is taking place.  

Thus, s ince in rea l  exper iments  t he re  is always an initial inde terminacy  in the boundary conditions, 
the resu l t s  of measurement s  a re  known with a cer ta in  e r r o r ,  and the main thing then is that smal l  p e r t u r -  
bations of the input data yield l a rge  deviations in the boundary conditions; t h e r e fo r e  it is often not poss ible  
to obtain solutions of inverse  heat  conduction problems with good accuracy  by means of d i rec t  methods .  
This conclusion does not apply to those cases  wherein,  for  a given t em p e ra tu r e  T(x l, T) = Tw(r) of the 
heated wall (x 1 = 0), a r e cove ry  is made of the unknown heat  flow q(r) in the body. This is a co r r ec t l y  
posed problem.  

By way of example ,  we show this for  the integral  equation of the inverse  hea t  conduction problem in 
the case  of a semiinfini te body, namely,  

'~K (~, ~) q (~) d~ = T (J, (9) 
0 

where  

exp [ 

For  the proof we use  the method due to Holmgren (see [12]). 
and in tegra te  with r e spec t  to T f rom 0 to z: 

z "~ 1 z 1 

S dl: J ' ( z - -  ~ - 7 -  K(T, ~)q(~)d~ = .i" ( z - -TF 7-2 T(~)d~. 
0 0 0 

We interchange the o rde r  of integrat ion over  the t r iangular  region:  

z i ' S q (~) V (~, z) d~ ---- . (z - -  ~)- -~ r (x) d~, 
0 0 

where 

4a (~ -- ~) 

I/'~-- 

We multiply both sides of Eq. (9) by ( z -  T) -t/2 

(10) 

z I 

v (L z) -- ( g (*, g)(z - ~) 2 dr. 
s 

(11) 

We different iate  the express ion  (10) with respec t  to z. 
express ion  has a meaning if  the function T(T) sat isf ies  the Hhlder condition 

,T( 'd)- -T( ,d ' ) l~K, 'd-- .c" l  c~, ( @ < a . < . l ) ,  

where  K is a posi t ive constant.  It is defined, in this case,  by the express ion  (see [12]) 
T ] 1 ~ 3 

d I'(z__T(TT(~)d~=z 2 T(z) 1 dz d -~- (Z-- ~<~- (T(~)--T(z)td~. 
0 "0 

As a resu l t  we have 
z 1 Z 3 

I'q(~) OV(~, z) a~ z - T T ( z )  1 - ~ -  q (z) V (z, z) 4- = (z --  %) ( r  (~) T (z)) d~. 
' . O z  - -  - - 2 - -  , 

0 0 

It is not difficult to show that for  x = 0 the quantity V(~, z) = (l/X0) a~-a-~-. 

The der ivat ive  of the right hand side of this 

(12) 

(13) 
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Replacing z by T in the express ion  (13), w e  obtain, finally, 

k t- T~(T) 1 i T~(~)--T_~v(~) d~].  (14) 

q(T)=- I. an L I/-~- 2 o (~--%)~'-- 

If the condition (12), which, as a ru le ,  is not a r e s t r i c t i v e  condition, is sa t i s f ied ,  the in tegrand function in 
Eq. (14) has  a weak s ingular i ty  and, consequently,  the given in tegra l  ex is t s .  This in tegra l  can be evaluated 
by the known ru les  for  the app rox ima te  in tegra t ion  of functions with points of discontinuity.  

Thus we have reduced  the p r o b l e m  of solving the in tegra l  equation of the f i r s t  kind (9) for  de te rmin ing  
the heat  flow in a semi inf in i te  body f rom a known t e m p e r a t u r e  on its boundary to the c o r r e c t l y - p o s e d  p r o b -  
l em of evaluating the exp re s s ion  (14). The re su l t  obtained is explained by the fact  that  the p rob l em in 
question is,  in fact ,  not an i n v e r s e  heat  conduction p rob l em s ince for  the de te rmina t ion  of q@) the exten-  
sion of the solution of the heat  conduction equation to the boundary of the region is not requ i red .  Actually,  
the d i r ec t  heat  conduction p r o b l e m  m u s t  be solved in accordance  with the conditions given on two boundar -  
ies of the region with a reca lcu la t ion  of a boundary condition of the f i r s t  kind on a boundary condition of the 
second kind (pseudo- inverse  heat  conduction p rob lem) .  

In a numbe r  of p rac t i ca l l y  impor tan t  cases  d i rec t  methods can be used  for  solving i l l -posed  i n v e r se  
heat  conduction p r o b l e m s .  This  is usual ly  t ied in with a specif ic  choice of the re la t ionship  involving the 
calculat ional  t ime  s tep,  the d is tance  to a point where  the t e m p e r a t u r e  in the body is fixed, and the t h e r m o -  
phys ica l  p r o p e r t i e s  of the body. In addition, a c r i t i ca l  value of the t ime  s tep is de te rmined  such that  the 
approx ima te  solution obtained is  a lso  suff icient ly smooth  if AT >-- A r c r i t  (see, for  example ,  [7, 8]). 

It is na tura l  that  the solution of i n v e r s e  heat  conduc t i onp rob l ems  by d i rec t  methods p roves  to be 
unsa t i s fac to ry  in many  cases  s ince,  in this r ega rd ,  the i nve r se  p rob l ems  m a y  be fo rmal ly  r ega rded  as 
c o r r e c t l y - p o s e d .  The use  of l a rge  s teps  in a calculat ion to r e m o v e  "osci l la t ions"  in the solution can lead 
~o a subs tant ia l  d e c r e a s e  in a c c u r a c y  of the r e su l t s .  Bes ides ,  one often encounters  p r o b l e m s  in p r a c t i c e  
in which the en t i re  t ime  in terva l  cons idered  is comparab l e  in magni tude with AZcrit  or  is even l e s s  than 
the c r i t i ca l  value of the s tep .  

In the gene ra l  c a se  the methods  for  solving i nve r se  p rob l ems  mus t  take into account a violat ion of 
the s tabi l i ty  condition impl ied  in the i r  formula t ion ,  i . e . ,  it is n e c e s s a r y  to consider  these  as i nco r r ec t ly  
fo rmula ted  p r o b l e m s .  

A. N. Tikhonov has recen t ly  given a v e r y  genera l  method for  solving i l l -posed  p r o b l e m s  (the method 
of regular iza t ion)  [13, 14]. His method involves the notion of a r egu la r i z ing  a lgor i thm (operator) .  A one-  
p a r a m e t e r  ope ra t o r  R a ,  act ing f r o m  F to U, is cal led a r egu la r i z ing  ope ra to r  if  R a is defined on all of F 
for  a r b i t r a r y  a > 0, is continuous on F, and, for  a r b i t r a r y  u E D (D s o m e  se t  in U), l im R aAu = u. 

~-->0 

The p r o b l e m s  involved in cons t ruc t ing  r e g u l a r i z e r s  R a for  i nve r se  heat  conduction p r o b l e m s  were  
cons idered  in [19, 20, 21]. 

A 
a 

C 
f 
q 

Tw,Ti  
U 

x 
k 
T 

qi 
T 

NOTA TION 

is the ope ra to r ;  
is the t h e r m a l  diffusivity;  
is  the pla te  th ickness ;  
is the vo lume t r i c  heat  capaci ty;  
is the inlet  data; 
is the heat  flux; 
a r e  the t e m p e r a t u r e s  at ex terna l  and in ternal  wal ls ,  r e spec t ive ly ;  
is the unknown solution; 
is the coordinate;  
is the t h e r m a l  conductivity;  
is the t ime;  
is the heat  flux on in ternal  wall; 
is the t e m p e r a t u r e .  
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