INVERSE PROBLEM OF HEAT CONDUCTION

O. M. Alifanov UDC 536,24.02

We consider the one-dimensional inverse problem of nonstationary heat conduction and we
analyze the physical and mathematical causes of instability in various forms of its solution.

For the heat conduction equation we can identify three types of inverse problems, which may be in-
ferred in seeking the cause for a known effect:

1) determination of the boundary conditions,
2) determination of the coefficients of the equation,
3) determination of the temperature field for a time in the past.

In this paper we investigate a problem of the first type [1-9, 15-23] in which, from the results of
measurements of temperature in the interior of a body, it is required to recover the heat flow or temper-
ature on its surface as a function of the time (a problem of this type was considered for the first time in
{2,15]). In the majority of cases this is the only way to determine the thermal boundary conditions when
studying heat and mass transfer processes experimentally, This problem takes on a special value in the
study of nonstationary heat phenomena.

A basic problem which arises when solving problems of this kind is the difficulty of obtaining suffi~
ciently exact and sufficiently stable results. Overcoming these difficulties must be based on a careful
study of the characteristic features of inverse problems and a strict justification for the choice of mathe-
matical methods for their solution.

We consider the heat conduction process in an infinite plate, described by the equation
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At the initial instant the distribution T(x, 0) = »(x) is known. A temperature transmitter is placed at the
point x = xy (xg > 0).
We assign the following conditions on the boundaries of the region x; = x = b:
T(x;, 1)=Ty(1),
oT (b, 1) ’ 2)
T =T, o —+ T g
where Ty(r), Tilr), and q;{r) are known functions.

The Eqs. (1) and (2) correspond to the direct problem of heat conduction. Solving it, we determine
the heat flow at the boundary x = xy: q1(r) = —A[@T(xy, T))/[0x].

In the region 0 = x = x; we consider the Cauchy problem corresponding to the continuation of the so-
lution of the heat conduction equation up to the boundary x = 0 of the region from the known conditions at
the point x4:

T(x, 1) =T (1),
T (x, 1)
ox

— A q, (T) (3)
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Equations (1) and (3) define the inverse problem of heat conduction from whose solution we wish to
determine the surface temperature Ty (r) = T(0, T) or the heat flow into the body, namely, q(r) = ~A[dT(0,
7)1/[0x]. We remark that it is not necessary to reduce the inverse problem to a Cauchy problem and that
another formulation of the problem is possible in which the solution is sought directly from the conditions
given on the boundaries x = x; and x = b.

By convention, we represent the inverse heat conduction problem by the first order operator equation
Au=Tf, ucDa, [€Qa, (4)

where A is a continuous operator acting from the space of solutions U into the space of the input data F; u
is the solution sought; f denotes input data; DA = U is the domain of definition of the operator A; Qp
= A(DA) S F is the domain of the values of the operator A.

In the general case the problem of solving the given equation is considered to be well-posed if its so-
lution satisfies the following requirements:

1) it exists for arbitrary f€Qp = F,
2) it is unique in U,

3) it is stable, i.e., to small variations of the right hand side f in the metric of the space F there
correspond small deviations of the solution u in the metric of the space U.

Henceforth we assume that the solution (4) exists and is unique. We base this assumption on the
physics of the inverse heat conduction problem, an assumption which is corroborated by Kovalevskaya's
theorem [10], according to which the solution of the Cauchy problem exists and is unique providing that
T(x), q;(r), and the solution sought are analytic.

We pause to analyze the third of the requirements stated above for the problem fo be well-posed.
For this purpose we consider the possible direct methods for solving the inverse problem in a linear for-
mulation (A = const, ¢ = A/C = const). By direct methods we mean methods of solving the initial problem
directly by establishing the inverse correspondence: u = R{f). The papers [1-9,15-18, 22, 23] are con-
cerned with this aspect of the problem.

Solution in the Form of a Power Series. We assume that the functions Ty(r) and q;(r) are infinitely

differentiable (Tl‘n) r) = dT/dr8, q1(n) r) = dBqy/d78, n— =) and that the coefficients in the heat conduc-
tion equation are constants. In this case we can write down formally the Stefan solution for determining
the temperature field; thus
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Differentiating the relation (5) with respect to x and retaining the first N terms, we write down a
finite expression for the heat flow on the boundary of the body at x = 0:

(5)
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For the temperature of the surface of the body we have
N—1 9, { )
7= N (R R @)
v n‘_.OJ C@n)lar  @2n - Dlath |

Thus, in determining the boundary conditions in accordance with the given form of the solution of
the inverse heat conduction problem, it is necessary to calculate the values of the derivatives up to the
N-th order. Since the functions Ty and q; are usually given discretely with certain fluctuating errors and
the operator of differentiation represents a typical case of unbounded operators, the direct method for
solving the inverse problem, indicated above, leads in the general case to an unstable calculation process.

Integral Form of the Inverse Heat Conduction Problem. In the linear formulation inverse problems
reduce to the solution of Volterra type integral equations of the first kind:

M=K 9@ =70, %<5 i<, ®)
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A simple and widely used method for solving Eq. (8) involves reducing it to an equation of the second kind
through the operation of differentiation:
(K ) )
1) —- i w(g) dg = —— .
u(x) \ Ko O =
However, such a procedure is possible if the kernel of the original equation nowhere vanishes on the
interval [ty, Tm] K@, 7) #0). In our case

Kri—§8—0, t—=<

]

so that we cannot apply this method for solving the integral equation (8). In addition, repeated differentia-
tion also does not give the desired result. Consequently, it is necessary to solve the original Eq. (8) of
the first kind directly.

The solution of this equation for u(r) constitutes a typical ill-posed problem since the Volterra opera-
tor represents a completely continuous operator.

Finite~Difference Form of the Solution. If we approximate the derivatives in the expressions (6) and
{(7) by finite differences, we obtain computational relationships analogous to the solution of the linear in-
verse heat conduction problem in an explicit scheme difference form, where N is the number of layers on
the segment 0 < x < xy (see [8]). Thus the numerical method of solving the original problem will also be
disposed towards an unstable computation.

Reduction to Variational Problems. It is desirable in the general case to carry through the recovery
of the boundary conditions in such a way as to reduce the residual A = p(Au, f), corresponding to the de-
viation of the left side from the right side in the metric of the space F, to some value determined by the
error in the approximate data of the problem. If the approximating operator Ay = A and the input informa-
tion f are known with accuracy 6 = 0, it is then necessary to have A ~ 0. The method, which suggests it~
self, of obtaining the desired approximations from the solution of the problem of minimizing a quadratic
functional can give rise to serious difficulties from a numerical standpoint. This is explained, on the one
hand, by the fact that convergence with respect to the functional does not imply convergence of the approxi-
mate solutions to the true solution, and, on the other hand, by the fact that it is usually necessary to solve
the problem with approximate data. The resulting "solutions" may differ substantially from the actual so-
lutions.

Such a situation is the result of an ill-posed problem Au =f. The condition of the variational prob-
lem may in many cases prove to be worse than that of the original problem. Thus for the minimization of
a quadratic functional use is often made of the Euler equation

A*Au — A*f = 0,
which is more poorlyconditionedthan Au—f = 0.

In the case of a linear law of heat conduction and a normalization corresponding to the space L, the
functional has the form

L
2

A= ([ [ K@ gu@ s —rof «)

Its minimization corresponds to the solution of a Fredholm integral equation of the first kind

Tm

[ K& Qu@dr=5@.

To
Such a problem is automatically ill-posed. Therefore the method of least squares, used in [3, 6-8] for
recovering the heat flow, does not yield stable solutions for sufficiently small time steps Ar.

Thus from an analysis of the possible direct methods of solving the original inverse heat conduction
problem we have established that these problems are mathematically ill-posed, there being an absence of
a continuous dependence of the results on the input data.

We pause to consider the physical side of this phenomenon. An essential point in understanding the
physical nature of the instability of inverse heat conduction problems is the strong smoothing of the char-
acteristic singularities of the functions Tw{) and q(r) as the temperature transmitter is moved deeper into
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the body from the heated surface. Therefore, to small deviations in f there will correspond large devia-
tions in the unknown solution u. Since changes in the input data are accomplished with the aid of a specific
system of physical instruments, these data are always known with a certain approximation 6, and the solu-
tion of the inverse heat conduction problem, corresponding to the measured input data, may differ substan-
tially from the solution sought and may clearly display a pronounced oscillatory behavior. The representa-
tion of the original operator A in terms of the approximating operator Aj (with an accuracy of approxima-
tion h) plays a definite role in distortion of the results as do also the round-off errors in the computation.
Moreover, there is an initial time interval At,, determined by the threshold sensitivity of the measuring
system, during which the instruments do not register in spite of the fact that heat is being applied to the
body. This initial indeterminateness in the boundary condition will be present over the whole time period
during which the investigation is taking place.

Thus, since in real experiments there is always an initial indeterminacy in the boundary conditions,
the results of measurements are known with a certain error, and the main thing then is that small pertur-
bations of the input data yield large deviations in the boundary conditions; therefore it is often not possible
to obtain solutions of inverse heat conduction problems with good accuracy by means of direct methods.
This conclusion does not apply to those cases wherein, for a given temperature T(x;, 7) = Ty, @) of the
heated wall (x4 = 0), a recovery is made of the unknown heat flow q(r) in the body. This is a correctly
posed problem.

By way of example, we show this for the integral equation of the inverse heat conduction problem in
the case of a semiinfinite body, namely,

(K 9@ ds =T, ®
where 0

5
1 7 Y T o=y
Kin 9 =-—1 = —_—
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For the proof we use the method due to Holmgren (see [12]). We multiply both sides of Eq. (9) by (z— T)—I/ 2
and integrate with respect to 7 from 0 to z:
1

Kt 9@ d = [ ¢—9 * T,
0

wl._-

f dv f (z— 1)_
o 4

We interchange the order of integration over the triangular region:

2 T -
vgﬂawaa@=§@~ﬂ P T dr, (10)
where

2 _.L
VE =K@ 89— * a (1)

We differentiate the expression (10) with respect to z. The derivative of the right hand side of this
expression has a meaning if the function T(r) satisfies the Holder condition

IT@)~T @) <K|v —v) p§<a<q. (12)

where K is a positive constant. It is defined, in this case, by the expression (see [12])
T 1 1 2 3
. -5 -7 1 T2 (e
e T T Tre - (=0 T re-Te
z .
As a result we have

oo

z R Z _
amwaa+§m93¥%ﬂwﬁ=z2T@-§S@—a (T® —T@) d. (13)

)

0
Tt is not difficult to show that for x = 0 the quantity V(£, z) = (I/Ay)Var.

1190



Replacing z by 7 in the expression (13), we obtain, finally,
8 S .
5 =D’

If the condition (12), which, as a rule, is not a restrictive condition, is satisfied, the integrand function in
Eq. (14) has a weak singularity and, consequently, the given integral exists. This integral can be evaluated
by the known rules for the approximate integration of functions with points of discontinuity.

Thus we have reduced the problem of solving the integral equation of the first kind (9) for determining
the heat flow in 2 semiinfinite body from a known temperature on its boundary to the correctly-posed prob-
lem of evaluating the expression (14). The result obtained is explained by the fact that the problem in
guestion is, in fact, not an inverse heat conduction problem since for the determination of q(r) the exten~
sion of the solution of the heat conduction equation to the boundary of the region is not required. Actually,
the direct heat conduction problem must be solved in accordance with the conditions given on two boundar-
ies of the region with a recalculation of a boundary condition of the first kind on a boundary condition of the
second kind (pseudo-inverse heat conduction problem).

In 2 number of practically important cases direct methods can be used for solving ill-posed inverse
heat conduction problems. This is usually tied in with a specific choice of the relationship involving the
calculational time step, the distance to a point where the temperature in the body is fixed, and the thermo-
physical properties of the body. In addition, a critical value of the time step is determined such that the
approximate solution obtained is also sufficiently smooth if AT = Arpit (see, for example, [7,8]).

It is natural that the solution of inverse heat conduction problems by direct methods proves to be
unsatisfactory in many cases since, in this regard, theinverse problems may be formally regarded as
correctly-posed. The use of large steps in a calculation to remove "oscillations" in the solution can lead
fo a substantial decrease in accuracy of the results. Besides, one often encounters problems in practice
in which the entire time interval considered is comparable in magnitude with Atopit or is even less than
the critical value of the step.

In the general case the methods for solving inverse problems must take into account a violation of
the stability condition implied in their formulation, i.e., it is necessary to consider these as incorrectly
formulated problems.

A. N. Tikhonov has recently given a very general method for solving ill-posed problems (the method
of regularization) [13, 14]. His method involves the notion of a regularizing algorithm (operator). A one-
parameter operator R%, acting from F to U, is called a regularizing operator if R% is defined on all of F
for arbitrarya > 0,1s continuous on F, and, for arbitrary u€D (Dsome set in U), iug R%Au = u.

The problems involved in constructing regularizers R® for inverse heat conduction problems were
considered in [19, 20, 21].

NOTATION

is the operator;

is the thermal diffusivity;

is the plate thickness;

is the volumetric heat capacity;
is the inlet data;

is the heat flux;

are the temperatures at external and internal walls, respectively;
is the unknown sclution;

is the coordinate;

is the thermal conductivity;

is the time;

is the heat flux on internal wall;
is the temperature.
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